
1 This quote is typically read as dis-
paraging the importance of actual phys-
ical computers in Computer Science,
but note that telescopes are absolutely
essential to astronomy as they provide
us with the means to connect theoretical
predictions with actual experimental
observations.
2 To be fair, in the following sentence
Graham says “you need to know how
to calculate time and space complexity
and about Turing completeness”. Ap-
parently, NP-hardness, randomization,
cryptography, and quantum computing
are not essential to a hacker’s education.

0
Introduction

“Computer Science is no more about computers than
astronomy is about telescopes”, attributed to Edsger
Dijkstra. 1

“Hackers need to understand the theory of computation
about as much as painters need to understand paint
chemistry.” , Paul Graham 2003. 2

“The subject of my talk is perhaps most directly indi-
cated by simply asking two questions: first, is it harder
to multiply than to add? and second, why?…I (would
like to) show that there is no algorithm for multiplication
computationally as simple as that for addition, and this
proves something of a stumbling block.”, Alan Cobham,
1964

The origin of much of science and medicine can be traced back to
the ancient Babylonians. But perhaps their greatest contribution to
humanity was the invention of the place-value number system. This is
the idea that we can represent any number using a fixed number of
digits, whereby the position of the digit is used to determine the cor-
responding value, as opposed to system such as Roman numerals,
where every symbol has a fixed numerical value regardless of posi-
tion. For example, the distance to the moon is 238,900 of our miles
or 259,956 Roman miles. The latter quantity, expressed in standard
Roman numerals is

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

Compiled on 11.8.2018 15:44

Learning Objectives:
• Introduce and motivate the study of computa-

tion for its own sake, irrespective of particular
implementations.

• The notion of an algorithm and some of its
history.

• Algorithms as not just tools, but also ways of
thinking and understanding.

• Taste of Big-𝑂 analysis and surprising creativ-
ity in efficient algorithms.



30 introduction to theoretical computer science

3 For more on the actual algorithms the
Babylonians used, see Knuth’s paper
and Neugebauer’s classic book.

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMDCCCCLVI

Writing the distance to the sun in Roman numerals would require
about 100,000 symbols: a 50 page book just containing this single
number!

This means that for someone who thinks of numbers in an additive
system like Roman numerals, quantities like the distance to the moon
or sun are not merely large- they are unspeakable: cannot be expressed
or even grasped. It’s no wonder that Eratosthenes, who was the first
person to calculate the earth’s diameter (up to about ten percent er-
ror) and Hipparchus who was the first to calculate the distance to
the moon, did not use a Roman-numeral type system but rather the
Babylonian sexadecimal (i.e., base 60) place-value system.

The Babylonians also invented the precursors of the “standard
algorithms” that we were all taught in elementary school for adding
and multiplying numbers.3 These algorithms and their variants have
been of course essential to people throughout history working with
abaci, papyrus, or pencil and paper, but in our computer age, do they
really serve any purpose beyond torturing third graders?

To answer this question, let us try to see in what sense is the stan-
dard digit by digit multiplication algorithm “better” than the straight-
forward implementation of multiplication as iterated addition. Let’s
start by more formally describing both algorithms:

Naive multiplication algorithm:

Input: Non-negative integers 𝑥, 𝑦
Operation:

1. Let 𝑟𝑒𝑠𝑢𝑙𝑡 ← 0.

2. For 𝑖 = 1, … , 𝑦: set 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑥
3. Output 𝑟𝑒𝑠𝑢𝑙𝑡

Standard grade-school multiplication algorithm:

Input: Non-negative integers 𝑥, 𝑦
Operation:

1. Let 𝑛 be number of digits of 𝑦, and set 𝑟𝑒𝑠𝑢𝑙𝑡 ← 0.

2. For 𝑖 = 0, … , 𝑛−1: set 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡+10𝑖×𝑦𝑖×𝑥,
where 𝑦𝑖 is the 𝑖-th digit of 𝑦 (i.e. 𝑦 = 100𝑦0 +101𝑦1 +
⋯ + 𝑦𝑛−110𝑛−1)

3. Output 𝑟𝑒𝑠𝑢𝑙𝑡

Both algorithms assume that we already know how to add num-
bers, and the second one also assumes that we can multiply a number

http://steiner.math.nthu.edu.tw/disk5/js/computer/1.pdf
https://www.amazon.com/Exact-Sciences-Antiquity-Neugebauer/dp/0486223329


introduction 31

4 This is a common size in several pro-
gramming languages; for example the
long data type in the Java program-
ming language, and (depending on
architecture) the long or long long
types in C.

by a power of 10 (which is after all a simple shift) as well as multiply
by a single-digit (which like addition, is done by multiplying each
digit and propagating carries). Now suppose that 𝑥 and 𝑦 are two
numbers of 𝑛 decimal digits each. Adding two such numbers takes at
least 𝑛 single-digit additions (depending on how many times we need
to use a “carry”), and so adding 𝑥 to itself 𝑦 times will take at least
𝑛 ⋅ 𝑦 single-digit additions. In contrast, the standard grade-school al-
gorithm reduces this problem to taking 𝑛 products of 𝑥 with a single-
digit (which require up to 2𝑛 single-digit operations each, depending
on carries) and then adding all of those together (total of 𝑛 additions,
which, again depending on carries, would cost at most 2𝑛2 single-digit
operations) for a total of at most 4𝑛2 single-digit operations. How
much faster would 4𝑛2 operations be than 𝑛 ⋅ 𝑦? And would this make
any difference in a modern computer?

Let us consider the case of multiplying 64-bit or 20-digit numbers.4

That is, the task of multiplying two numbers 𝑥, 𝑦 that are between 1019

and 1020. Since in this case 𝑛 = 20, the standard algorithm would use
at most 4𝑛2 = 1600 single-digit operations, while repeated addition
would require at least 𝑛 ⋅ 𝑦 ≥ 20 ⋅ 1019 single-digit operations. To
understand the difference, consider that a human being might do
a single-digit operation in about 2 seconds, requiring just under an
hour to complete the calculation of 𝑥 × 𝑦 using the grade-school
algorithm. In contrast, even though it is more than a billion times
faster, a modern PC that computes 𝑥 × 𝑦 using naïve iterated addition
would require about 1020/109 = 1011 seconds (which is more than
three millenia!) to compute the same result.

P It is important to distinguish between the value of
a number, and the length of its representation (i.e., the
number of digits it has). There is a big difference
between the two: having 1,000,000,000 dollars is not
the same as having 10 dollars! When talking about
running time of algorithms, “less is more”, and so
an algorithm that runs in time proportional to the
number of digits of an input number (or even the
number of digit squared) is much preferred to an
algorithm that runs in time proportional to the value
of the input number.

We see that computers have not made algorithms obsolete. On
the contrary, the vast increase in our ability to measure, store, and
communicate data has led to a much higher demand for developing
better and more sophisticated algorithms that can allow us to make
better decisions based on these data. We also see that to a large extent
the notion of algorithm is independent of the actual computing device
that will execute it. The digit-by-digit multiplication algorithm is



32 introduction to theoretical computer science

5 That is, he conjectured that the number
of operations would be at least some
𝑛2/𝐶 operations for some constant 𝐶
or, using “Big-𝑂 notation”, Ω(𝑛2) oper-
ations. See the mathematical background
chapter for a precise definition of Big-𝑂
notation.

6 At the time of this writing, the stan-
dard Python multiplication implemen-
tation switches from the elementary
school algorithm to Karatsuba’s algo-
rithm when multiplying numbers larger
than 1000 bits long.

vastly better than iterated addition, regardless whether the technology
we use to implement it is a silicon based chip, or a third grader with
pen and paper.

Theoretical computer science is concerned with the inherent proper-
ties of algorithms and computation; namely, those properties that are
independent of current technology. We ask some questions that were
already pondered by the Babylonians, such as “what is the best way to
multiply two numbers?”, but also questions that rely on cutting-edge
science such as “could we use the effects of quantum entanglement to
factor numbers faster?”.

In Computer Science parlance, a scheme such as the decimal (or
sexadecimal) positional representation for numbers is known as a
data structure, while the operations on this representations are known
as algorithms. Data structures and algorithms have enabled amazing
applications, but their importance goes beyond their practical utility.
Structures from computer science, such as bits, strings, graphs, and
even the notion of a program itself, as well as concepts such as univer-
sality and replication, have not just found (many) practical uses but
contributed a new language and a new way to view the world.

0.1 EXTENDED EXAMPLE: A FASTER WAY TO MULTIPLY

Once you think of the standard digit-by-digit multiplication algo-
rithm, it seems like obviously the “right” way to multiply numbers.
Indeed, in 1960, the famous mathematician Andrey Kolmogorov orga-
nized a seminar at Moscow State University in which he conjectured
that every algorithm for multiplying two 𝑛 digit numbers would
require a number of basic operations that is proportional to 𝑛2.5 An-
other way to say it, is that he conjectured that in any multiplication
algorithm, doubling the number of digits would quadruple the number
of basic operations required.

A young student named Anatoly Karatsuba was in the audience,
and within a week he found an algorithm that requires only about
𝐶𝑛1.6 operations for some constant 𝐶. Such a number becomes much
smaller than 𝑛2 as 𝑛 grows.6 Amazingly, Karatsuba’s algorithm is
based on a faster way to multiply two-digit numbers.

Suppose that 𝑥, 𝑦 ∈ [100] = {0, … , 99} are a pair of two-digit
numbers. Let’s write 𝑥 for the “tens” digit of 𝑥, and 𝑥 for the “ones”
digit, so that 𝑥 = 10𝑥+𝑥, and write similarly 𝑦 = 10𝑦 +𝑦 for 𝑦, 𝑦 ∈ [10].
The grade-school algorithm for multiplying 𝑥 and 𝑦 is illustrated in
Fig. 1.

The grade-school algorithm works by transforming the task of
multiplying a pair of two-digit number into four single-digit multipli-

https://svn.python.org/projects/python/trunk/Objects/longobject.c
https://svn.python.org/projects/python/trunk/Objects/longobject.c
https://svn.python.org/projects/python/trunk/Objects/longobject.c


introduction 33

Figure 1: The grade-school multiplication algorithm illustrated for multiplying 𝑥 =
10𝑥 + 𝑥 and 𝑦 = 10𝑦 + 𝑦. It uses the formula (10𝑥 + 𝑥) × (10𝑦 + 𝑦) = 100𝑥𝑦 + 10(𝑥𝑦 +
𝑥𝑦) + 𝑥𝑦.

7 The term (𝑥 + 𝑥)(𝑦 + 𝑦) is not exactly
a single-digit multiplication as 𝑥 + 𝑥
and 𝑦 + 𝑦 are numbers between 0 and
18 and not between 0 and 9. As we’ll
see, it turns out that this does not make
much of a difference, since when we use
this algorithm recursively on 𝑛-digit
numbers, this term will have at most
⌈𝑛/2⌉ + 1 digits, which is essentially
half the number of digits as the original
input.

cations via the formula

(10𝑥 + 𝑥) × (10𝑦 + 𝑦) = 100𝑥𝑦 + 10(𝑥𝑦 + 𝑥𝑦) + 𝑥𝑦 (1)

Karatsuba’s algorithm is based on the observation that we can
express this also as

(10𝑥+𝑥)×(10𝑦+𝑦) = (100−10)𝑥𝑦+10 [(𝑥 + 𝑥)(𝑦 + 𝑦)]−(10−1)𝑥𝑦 (2)

which reduces multiplying the two-digit number 𝑥 and 𝑦 to com-
puting the following three “simple” products: 𝑥𝑦, 𝑥𝑦 and (𝑥 + 𝑥)(𝑦 +
𝑦).7

Of course if all we wanted to was to multiply two digit numbers,
we wouldn’t really need any clever algorithms. It turns out that we
can repeatedly apply the same idea, and use them to multiply 4-digit
numbers, 8-digit numbers, 16-digit numbers, and so on and so forth.
If we used the grade-school approach then our cost for doubling the
number of digits would be to quadruple the number of multiplications,
which for 𝑛 = 2ℓ digits would result in about 4ℓ = 𝑛2 operations. In
contrast, in Karatsuba’s approach doubling the number of digits only
triples the number of operations, which means that for 𝑛 = 2ℓ digits
we require about 3ℓ = 𝑛log2 3 ∼ 𝑛1.58 operations.

Specifically, we use a recursive strategy as follows:



34 introduction to theoretical computer science

Figure 2: Karatsuba’s multiplication algorithm illustrated for multiplying 𝑥 = 10𝑥 + 𝑥
and 𝑦 = 10𝑦 + 𝑦. We compute the three orange, green and purple products 𝑥𝑦, 𝑥𝑦 and
(𝑥 + 𝑥)(𝑦 + 𝑦) and then add and subtract them to obtain the result.

8 Recall that for a number 𝑥, ⌊𝑥⌋ is
obtained by “rounding down” 𝑥 to the
largest integer smaller or equal to 𝑥.

Karatsuba Multiplication:

Input: nonnegative integers 𝑥, 𝑦 each of at most 𝑛
digits

Operation:

1. If 𝑛 ≤ 2 then return 𝑥 ⋅ 𝑦 (using a constant number
of single-digit multiplications)

2. Otherwise, let 𝑚 = ⌊𝑛/2⌋, and write 𝑥 = 10𝑚𝑥 + 𝑥
and 𝑦 = 10𝑚𝑦 + 𝑦. 8

2. Use recursion to compute 𝐴 = 𝑥𝑦, 𝐵 = 𝑥𝑦 and
𝐶 = (𝑥 + 𝑥)(𝑦 + 𝑦). Note that all the numbers will
have at most 𝑚 + 1 digits.

3. Return (10𝑛 − 10𝑚) ⋅ 𝐴 + 10𝑚 ⋅ 𝐵 + (1 − 10𝑚) ⋅ 𝐶

To understand why the output will be correct, first note that for 𝑛 >
2, it will always hold that 𝑚 < 𝑛 − 1, and hence the recursive calls will
always be for multiplying numbers with a smaller number of digits,
and (since eventually we will get to single or double digit numbers)
the algorithm will indeed terminate. Now, since 𝑥 = 10𝑚𝑥 + 𝑥 and
𝑦 = 10𝑚𝑦 + 𝑦,

𝑥 × 𝑦 = 10𝑛𝑥 ⋅ 𝑦 + 10𝑚(𝑥𝑦 + 𝑥𝑦) + 𝑥𝑦 . (3)



introduction 35

Rearranging the terms we see that

𝑥 × 𝑦 = 10𝑛𝑥 ⋅ 𝑦 + 10𝑚 [(𝑥 + 𝑥)(𝑦 + 𝑦) − 𝑥𝑦 − 𝑥𝑦] + 𝑥𝑦 , (4)

which equals (10𝑛 − 10𝑚) ⋅ 𝐴 + 10𝑚 ⋅ 𝐵 + (1 − 10𝑚) ⋅ 𝐶, the value
returned by the algorithm.

The key observation is that Eq. (4) reduces the task of computing
the product of two 𝑛-digit numbers to computing three products of
⌈𝑛/2⌉-digit numbers. Specifically, we can compute 𝑥 × 𝑦 from the three
products 𝑥𝑦, 𝑥𝑦 and (𝑥 + 𝑥)(𝑦 + 𝑦)), using a constant number (in fact
eight) of additions, subtractions, and multiplications by 10𝑛 or 10⌊𝑛/2⌋.
(Multiplication by a power of ten can be done very efficiently as it
corresponds to simply shifting the digits.) Intuitively this means that
as the number of digits doubles, the cost of performing a multiplication
via Karatsuba’s algorithm triples instead of quadrupling, as happens in
the naive algorithm. This implies that multiplying numbers of 𝑛 = 2ℓ

digits costs about 3ℓ = 𝑛log2 3 ∼ 𝑛1.585 operations. In a Exercise 0.3,
you will formally show that the number of single-digit operations that
Karatsuba’s algorithm uses for multiplying 𝑛 digit integers is at most
𝑂(𝑛log2 3) (see also Fig. 2).

Figure 3: Running time of Karatsuba’s algorithm vs. the grade-school algorithm.
(Python implementation available online.) Note the existence of a “cutoff” length, where
for sufficiently large inputs Karatsuba becomes more efficient than the grade-school
algorithm. The precise cutoff location varies by implementation and platform details,
but will always occur eventually.

R Ceilings, floors, and rounding One of the ben-
efits of using Big-𝑂 notation is that we can allow
ourselves to be a little looser with issues such as
rounding numbers etc.. For example, the natural way
to describe Karatsuba’s algorithm’s running time is

https://goo.gl/zwzpYe


36 introduction to theoretical computer science

Figure 4: Karatsuba’s algorithm reduces an 𝑛-bit multiplication to three 𝑛/2-bit
multiplications, which in turn are reduced to nine 𝑛/4-bit multiplications and so on.
We can represent the computational cost of all these multiplications in a 3-ary tree of
depth log2 𝑛, where at the root the extra cost is 𝑐𝑛 operations, at the first level the extra
cost is 𝑐(𝑛/2) operations, and at each of the 3𝑖 nodes of level 𝑖, the extra cost is 𝑐(𝑛/2𝑖).
The total cost is 𝑐𝑛 ∑log2 𝑛

𝑖=0 (3/2)𝑖 ≤ 10𝑐𝑛log2 3 by the formula for summing a geometric
series.

via the following recursive equation

𝑇 (𝑛) = 3𝑇 (𝑛/2) + 𝑂(𝑛) (5)

but of course if 𝑛 is not even then we can-
not recursively invoke the algorithm on 𝑛/2-
digit integers. Rather, the true recursion is
𝑇 (𝑛) = 3𝑇 (⌊𝑛/2⌋ + 1) + 𝑂(𝑛). However, this
will not make much difference when we don’t worry
about constant factors, since it’s not hard to show
that 𝑇 (𝑛 + 𝑂(1)) ≤ 𝑇 (𝑛) + 𝑜(𝑇 (𝑛)) for the functions
we care about. Another way to show that this doesn’t
hurt us is to note that for every number 𝑛, we can
find a number 𝑛′ ≤ 2𝑛, such that 𝑛′ is a power of
two. Thus we can always “pad” the input by adding
some input bits to make sure the number of digits is
a power of two, in which case we will never run into
these rounding issues. These kind of tricks work not
just in the context of multiplication algorithms but in
many other cases as well. Thus most of the time we
can safely ignore these kinds of “rounding issues”.

0.1.1 Beyond Karatsuba’s algorithm
It turns out that the ideas of Karatsuba can be further extended to
yield asymptotically faster multiplication algorithms, as was shown
by Toom and Cook in the 1960s. But this was not the end of the line.
In 1971, Schönhage and Strassen gave an even faster algorithm using
the Fast Fourier Transform; their idea was to somehow treat integers as
“signals” and do the multiplication more efficiently by moving to the



introduction 37

9 The Fourier transform is a central tool in
mathematics and engineering, used in
a great number of applications. If you
have not seen it yet, you will hopefully
encounter it at some point in your
studies.

Fourier domain.9 The latest asymptotic improvement was given by
Fürer in 2007 (though it only starts beating the Schönhage-Strassen
algorithm for truly astronomical numbers). And yet, despite all this
progress, we still don’t know whether or not there is an 𝑂(𝑛) time
algorithm for multiplying two 𝑛 digit numbers!

R Matrix Multiplication (advanced note) (We will have
several such “advanced” or “optional” notes and
sections throughout this book. These may assume
background that not every student has, and can be
safely skipped over as none of the future parts will
depend on them.)
It turns out that a similar idea as Karatsuba’s can
be used to speed up matrix multiplications as well.
Matrices are a powerful way to represent linear
equations and operations, widely used in a great
many applications of scientific computing, graphics,
machine learning, and many many more.
One of the basic operations one can do with
two matrices is to multiply them. For example,

if 𝑥 = (𝑥0,0 𝑥0,1
𝑥1,0 𝑥1,1

) and 𝑦 = (𝑦0,0 𝑦0,1
𝑦1,0 𝑦1,1

)

then the product of 𝑥 and 𝑦 is the matrix

(𝑥0,0𝑦0,0 + 𝑥0,1𝑦1,0 𝑥0,0𝑦0,1 + 𝑥0,1𝑦1,1
𝑥1,0𝑦0,0 + 𝑥1,1𝑦1,0 𝑥1,0𝑦0,1 + 𝑥1,1𝑦1,1

). You

can see that we can compute this matrix by eight
products of numbers.
Now suppose that 𝑛 is even and 𝑥 and 𝑦 are a pair of
𝑛 × 𝑛 matrices which we can think of as each com-
posed of four (𝑛/2) × (𝑛/2) blocks 𝑥0,0, 𝑥0,1, 𝑥1,0, 𝑥1,1
and 𝑦0,0, 𝑦0,1, 𝑦1,0, 𝑦1,1. Then the formula for the ma-
trix product of 𝑥 and 𝑦 can be expressed in the same
way as above, just replacing products 𝑥𝑎,𝑏𝑦𝑐,𝑑 with
matrix products, and addition with matrix addition.
This means that we can use the formula above to
give an algorithm that doubles the dimension of the
matrices at the expense of increasing the number of
operation by a factor of 8, which for 𝑛 = 2ℓ will result
in 8ℓ = 𝑛3 operations.
In 1969 Volker Strassen noted that we can compute
the product of a pair of two-by-two matrices using
only seven products of numbers by observing that
each entry of the matrix 𝑥𝑦 can be computed by
adding and subtracting the following seven terms:
𝑡1 = (𝑥0,0 + 𝑥1,1)(𝑦0,0 + 𝑦1,1), 𝑡2 = (𝑥0,0 + 𝑥1,1)𝑦0,0,
𝑡3 = 𝑥0,0(𝑦0,1 − 𝑦1,1), 𝑡4 = 𝑥1,1(𝑦0,1 − 𝑦0,0),
𝑡5 = (𝑥0,0 + 𝑥0,1)𝑦1,1, 𝑡6 = (𝑥1,0 − 𝑥0,0)(𝑦0,0 + 𝑦0,1),
𝑡7 = (𝑥0,1 − 𝑥1,1)(𝑦1,0 + 𝑦1,1). Indeed, one can verify

that 𝑥𝑦 = (𝑡1 + 𝑡4 − 𝑡5 + 𝑡7 𝑡3 + 𝑡5
𝑡2 + 𝑡4 𝑡1 + 𝑡3 − 𝑡2 + 𝑡6

).

Using this observation, we can obtain an algorithm



38 introduction to theoretical computer science

such that doubling the dimension of the matrices
results in increasing the number of operations by
a factor of 7, which means that for 𝑛 = 2ℓ the cost
is 7ℓ = 𝑛log2 7 ∼ 𝑛2.807. A long sequence of work
has since improved this algorithm, and the current
record has running time about 𝑂(𝑛2.373). However,
unlike the case of integer multiplication, at the mo-
ment we don’t know of any algorithm for matrix
multiplication that runs in time linear or even close
to linear in the size of the input matrices (e.g., an
𝑂(𝑛2𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)) time algorithm). People have tried
to use group representations, which can be thought
of as generalizations of the Fourier transform, to
obtain faster algorithms, but this effort has not yet
succeeded.

0.2 ALGORITHMS BEYOND ARITHMETIC

The quest for better algorithms is by no means restricted to arithmeti-
cal tasks such as adding, multiplying or solving equations. Many
graph algorithms, including algorithms for finding paths, matchings,
spanning tress, cuts, and flows, have been discovered in the last sev-
eral decades, and this is still an intensive area of research. (For ex-
ample, the last few years saw many advances in algorithms for the
maximum flow problem, borne out of surprising connections with elec-
trical circuits and linear equation solvers.) These algorithms are being
used not just for the “natural” applications of routing network traffic
or GPS-based navigation, but also for applications as varied as drug
discovery through searching for structures in gene-interaction graphs
to computing risks from correlations in financial investments.

Google was founded based on the PageRank algorithm, which is an
efficient algorithm to approximate the “principal eigenvector” of (a
dampened version of) the adjacency matrix of web graph. The Aka-
mai company was founded based on a new data structure, known as
consistent hashing, for a hash table where buckets are stored at differ-
ent servers. The backpropagation algorithm, which computes partial
derivatives of a neural network in 𝑂(𝑛) instead of 𝑂(𝑛2) time, under-
lies many of the recent phenomenal successes of learning deep neural
networks. Algorithms for solving linear equations under sparsity
constraints, a concept known as compressed sensing, have been used to
drastically reduce the amount and quality of data needed to analyze
MRI images. This is absolutely crucial for MRI imaging of cancer tu-
mors in children, where previously doctors needed to use anesthesia
to suspend breath during the MRI exam, sometimes with dire conse-
quences.

Even for classical questions, studied through the ages, new dis-

https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm#Sub-cubic_algorithms
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm#Sub-cubic_algorithms
https://en.wikipedia.org/wiki/Group_representation
http://discreteanalysisjournal.com/article/1245-on-cap-sets-and-the-group-theoretic-approach-to-matrix-multiplication
http://discreteanalysisjournal.com/article/1245-on-cap-sets-and-the-group-theoretic-approach-to-matrix-multiplication


introduction 39

coveries are still being made. For example, for the question of de-
termining whether a given integer is prime or composite, which has
been studied since the days of Pythagoras, efficient probabilistic algo-
rithms were only discovered in the 1970s, while the first deterministic
polynomial-time algorithm was only found in 2002. For the related
problem of actually finding the factors of a composite number, new
algorithms were found in the 1980s, and (as we’ll see later in this
course) discoveries in the 1990s raised the tantalizing prospect of ob-
taining faster algorithms through the use of quantum mechanical
effects.

Despite all this progress, there are still many more questions than
answers in the world of algorithms. For almost all natural prob-
lems, we do not know whether the current algorithm is the “best”, or
whether a significantly better one is still waiting to be discovered. As
we already saw, even for the classical problem of multiplying numbers
we have not yet answered the age-old question of “is multiplication
harder than addition?” .

But at least we now know the right way to ask it.

0.3 ON THE IMPORTANCE OF NEGATIVE RESULTS.

Finding better multiplication algorithms is undoubtedly a worthwhile
endeavor. But why is it important to prove that such algorithms don’t
exist? What useful applications could possibly arise from an impossi-
bility result?

One motivation is pure intellectual curiosity. After all, this is a
question even Archimedes could have been excited about. Another
reason to study impossibility results is that they correspond to the
fundamental limits of our world. In other words, they are laws of na-
ture. In physics, the impossibility of building a perpetual motion ma-
chine corresponds to the law of conservation of energy. The impossibility
of building a heat engine beating Carnot’s bound corresponds to the
second law of thermodynamics, while the impossibility of faster-than-
light information transmission is a cornerstone of special relativity.

In mathematics, while we all learned the solution for quadratic
equations in high school, the impossibility of generalizing this to
equations of degree five or more gave birth to group theory. Another
example of an impossibility result comes from geometry. For two
millennia, mathematicians tried to show that Euclid’s fifth axiom or
“postulate” could be derived from the first four. (This fifth postu-
late was known as the “parallel postulate”, and roughly speaking it
states that every line has a unique parallel line of each distance.) It
was shown to be impossible using constructions of so called “non-
Euclidean geometries”, which turn out to be crucial for the theory of
general relativity.

https://en.wikipedia.org/wiki/AKS_primality_test
https://en.wikipedia.org/wiki/AKS_primality_test


40 introduction to theoretical computer science

10 Indeed, some exciting recent research
is focused on trying to use compu-
tational complexity to shed light on
fundamental questions in physics such
understanding black holes and recon-
ciling general relativity with quantum
mechanics.

R It is fine if you have not yet encountered many of
the above examples. I hope however that they spark
your curiosity!

In an analogous way, impossibility results for computation corre-
spond to “computational laws of nature” that tell us about the fun-
damental limits of any information processing apparatus, whether
based on silicon, neurons, or quantum particles.10 Moreover, com-
puter scientists have recently been finding creative approaches to
apply computational limitations to achieve certain useful tasks. For
example, much of modern Internet traffic is encrypted using the RSA
encryption scheme, which relies on its security on the (conjectured)
impossibility of efficiently factoring large integers. More recently, the
Bitcoin system uses a digital analog of the “gold standard” where, in-
stead of using a precious metal, new currency is obtained by “mining”
solutions for computationally difficult problems.

✓ Lecture Recap

• The history of algorithms goes back thousands of
years; they have been essential much of human
progress and these days form the basis of multi-
billion dollar industries, as well as life-saving
technologies.

• There is often more than one algorithm to achieve
the same computational task. Finding a faster al-
gorithm can often make a much bigger difference
than improving computing hardware.

• Better algorithms and data structures don’t just
speed up calculations, but can yield new qualita-
tive insights.

• One question we will study is to find out what is
the most efficient algorithm for a given problem.

• To show that an algorithm is the most efficient
one for a given problem, we need to be able to
prove that it is impossible to solve the problem us-
ing a smaller amount of computational resources.

0.4 ROADMAP TO THE REST OF THIS COURSE

Often, when we try to solve a computational problem, whether it is
solving a system of linear equations, finding the top eigenvector of a
matrix, or trying to rank Internet search results, it is enough to use the
“I know it when I see it” standard for describing algorithms. As long
as we find some way to solve the problem, we are happy and don’t
care so much about formal descriptions of the algorithm. But when

http://www.scottaaronson.com/barbados-2016.pdf
https://en.wikipedia.org/wiki/Bitcoin


introduction 41

we want to answer a question such as “does there exist an algorithm to
solve the problem 𝑃 ?” we need to be much more precise.

In particular, we will need to (1) define exactly what it means to
solve 𝑃 , and (2) define exactly what an algorithm is. Even (1) can
sometimes be non-trivial but (2) is particularly challenging; it is not
at all clear how (and even whether) we can encompass all potential
ways to design algorithms. We will consider several simple models of
computation, and argue that, despite their simplicity, they do capture
all “reasonable” approaches to achieve computing, including all those
that are currently used in modern computing devices.

Once we have these formal models of computation, we can try to
obtain impossibility results for computational tasks, showing that some
problems can not be solved (or perhaps can not be solved within the
resources of our universe). Archimedes once said that given a ful-
crum and a long enough lever, he could move the world. We will see
how reductions allow us to leverage one hardness result into a slew of
a great many others, illuminating the boundaries between the com-
putable and uncomputable (or tractable and intractable) problems.

Later in this course we will go back to examining our models of
computation, and see how resources such as randomness or quantum
entanglement could potentially change the power of our model. In
the context of probabilistic algorithms, we will see a glimpse of how
randomness has become an indispensable tool for understanding
computation, information, and communication. We will also see how
computational difficulty can be an asset rather than a hindrance, and
be used for the “derandomization” of probabilistic algorithms. The
same ideas also show up in cryptography, which has undergone not
just a technological but also an intellectual revolution in the last few
decades, much of it building on the foundations that we explore in
this course.

Theoretical Computer Science is a vast topic, branching out and
touching upon many scientific and engineering disciplines. This
course only provides a very partial (and biased) sample of this area.
More than anything, I hope I will manage to “infect” you with at least
some of my love for this field, which is inspired and enriched by the
connection to practice, but which I find to be deep and beautiful re-
gardless of applications.

0.4.1 Dependencies between chapters
This book is divided into the following parts:

• Preliminaries: Introduction, mathematical background, and repre-
senting objects as strings.

• Part I: Finite computation: Boolean circuits / straightline pro-



42 introduction to theoretical computer science

grams. Universal gatesets, counting lower bound, representing
programs as string and universality.

• Part II: Uniform computation: Turing machines / programs with
loops. Equivalence of models (including RAM machines and 𝜆
calculus), universality, uncomputability, Gödel’s incompleteness
theorem, restricted models (regular and context free languages).

• Part III: Efficient computation: Definition of running time, time
hierarchy theorem, P and NP, NP completeness, space bounded
computation.

• Part IV: Randomized computation: Probability, randomized algo-
rithms, BPP, amplification, BPP ⊆ P/𝑝𝑜𝑙𝑦, pseudrandom generators
and derandomization.

• Part V: Advanced topics: Cryptography, proofs and algorithms
(interactive and zero knowledge proofs, Curry-Howard correspon-
dence), quantum computing.

The book proceeds in linear order, with each chapter building on
the previous one, with the following exceptions:

• All chapters in Part V (Advanced topics) are independent of one
another, and you can choose which one of them to read.

• Chapter 10 (Gödel’s incompleteness theorem), Chapter 9 (Restricted
computational models), and Chapter 16 (Space bounded computa-
tion), are not used in following chapters. Hence you can choose to
skip them.

A course based on this book can use all of Parts I, II, and III (possi-
bly skipping over some or all of Chapter 10, Chapter 9 or Chapter 16),
and then either cover all or some of Part IV, and add a “sprinkling” of
advanced topics from Part V based on student or instructor interest.

0.5 EXERCISES

R Disclaimer Most of the exercises have been written
in the summer of 2018 and haven’t yet been fully
debugged. While I would prefer people do not post
online solutions to the exercises, I would greatly
appreciate if you let me know of any bugs. You can
do so by posting a GitHub issue about the exercise,
and optionally complement this with an email to me
with more details about the attempted solution.

https://github.com/boazbk/tcs/issues


introduction 43

11 Hint: Use a proof by induction -
suppose that this is true for all 𝑛’s from
1 to 𝑚, prove that this is true also for
𝑚 + 1.

Exercise 0.1 Rank the significance of the following inventions in
speeding up multiplication of large (that is 100-digit or more) num-
bers. That is, use “back of the envelope” estimates to order them in
terms of the speedup factor they offered over the previous state of
affairs.

1. Discovery of the grade-school digit by digit algorithm (improving
upon repeated addition)

2. Discovery of Karatsuba’s algorithm (improving upon the digit by
digit algorithm)

3. Invention of modern electronic computers (improving upon calcu-
lations with pen and paper).

�

Exercise 0.2 The 1977 Apple II personal computer had a processor
speed of 1.023 Mhz or about 106 operations per seconds. At the
time of this writing the world’s fastest supercomputer performs 93
“petaflops” (1015 floating point operations per second) or about 1018

basic steps per second. For each one of the following running times
(as a function of the input length 𝑛), compute for both computers how
large an input they could handle in a week of computation, if they run
an algorithm that has this running time:

1. 𝑛 operations.

2. 𝑛2 operations.

3. 𝑛 log 𝑛 operations.

4. 2𝑛 operations.

5. 𝑛! operations.

�

Exercise 0.3 — Analysis of Karatsuba’s Algorithm. 1. Suppose that
𝑇1, 𝑇2, 𝑇3, … is a sequence of numbers such that 𝑇2 ≤ 10 and for ev-
ery 𝑛, 𝑇𝑛 ≤ 3𝑇⌈𝑛/2⌉ + 𝐶𝑛 for some 𝐶 ≥ 1. Prove that 𝑇𝑛 ≤ 10𝐶𝑛log2 3

for every 𝑛 > 2.11

2. Prove that the number of single-digit operations that Karatsuba’s
algorithm takes to multiply two 𝑛 digit numbers is at most
1000𝑛log2 3.

�

Exercise 0.4 Implement in the programming language of your
choice functions Gradeschool_multiply(x,y) and Karat-

suba_multiply(x,y) that take two arrays of digits x and y and



44 introduction to theoretical computer science

12 Hint: Start by showing this for the case
that 𝑛 = 𝑘𝑡 for some natural number 𝑡,
in which case you can do so recursively
by breaking the matrices into 𝑘 × 𝑘
blocks.

return an array representing the product of x and y (where x is
identified with the number x[0]+10*x[1]+100*x[2]+... etc..)
using the grade-school algorithm and the Karatsuba algorithm
respectively. At what number of digits does the Karatsuba algorithm
beat the grade-school one? �

Exercise 0.5 — Matrix Multiplication (optional, advanced). In this exercise,
we show that if for some 𝜔 > 2, we can write the product of two 𝑘 × 𝑘
real-valued matrices 𝐴, 𝐵 using at most 𝑘𝜔 multiplications, then we
can multiply two 𝑛 × 𝑛 matrices in roughly 𝑛𝜔 time for every large
enough 𝑛.

To make this precise, we need to make some notation that is unfor-
tunately somewhat cumbersome. Assume that there is some 𝑘 ∈ ℕ
and 𝑚 ≤ 𝑘𝜔 such that for every 𝑘 × 𝑘 matrices 𝐴, 𝐵, 𝐶 such that
𝐶 = 𝐴𝐵, we can write for every 𝑖, 𝑗 ∈ [𝑘]:

𝐶𝑖,𝑗 =
𝑚

∑
ℓ=0

𝛼ℓ
𝑖,𝑗𝑓ℓ(𝐴)𝑔ℓ(𝐵) (6)

for some linear functions 𝑓0, … , 𝑓𝑚−1, 𝑔0, … , 𝑔𝑚−1 ∶ ℝ𝑛2 → ℝ and
coefficients {𝛼ℓ

𝑖,𝑗}𝑖,𝑗∈[𝑘],ℓ∈[𝑚]. Prove that under this assumption for
every 𝜖 > 0, if 𝑛 is sufficiently large, then there is an algorithm that
computes the product of two 𝑛 × 𝑛 matrices using at most 𝑂(𝑛𝜔+𝜖)
arithmetic operations.12 �

0.6 BIBLIOGRAPHICAL NOTES

For an overview of what we’ll see in this course, you could do far
worse than read Bernard Chazelle’s wonderful essay on the Algorithm
as an Idiom of modern science.

0.7 FURTHER EXPLORATIONS

Some topics related to this chapter that might be accessible to ad-
vanced students include:

• The Fourier transform, the Fast Fourier transform algorithm and
how to use it multiply polynomials and integers. This lecture of Jeff
Erickson (taken from his collection of notes ) is a very good starting
point. See also this MIT lecture and this popular article.

• Fast matrix multiplication algorithms, and the approach of obtain-
ing exponent two via group representations.

• The proofs of some of the classical impossibility results in mathe-
matics we mentioned, including the impossibility of proving Eu-
clid’s fifth postulate from the other four, impossibility of trisecting
an angle with a straightedge and compass and the impossibility

https://www.cs.princeton.edu/~chazelle/pubs/algorithm.html
https://www.cs.princeton.edu/~chazelle/pubs/algorithm.html
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/02-fft.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/02-fft.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec05.pdf
http://www.ams.org/samplings/feature-column/fcarc-multiplication


introduction 45

of solving a quintic equation via radicals. A geometric proof of
the impossibility of angle trisection (one of the three geometric
problems of antiquity, going back to the ancient greeks) is given in
this blog post of Tao. This book of Mario Livio covers some of the
background and ideas behind these impossibility results.

http://mathworld.wolfram.com/GeometricProblemsofAntiquity.html
http://mathworld.wolfram.com/GeometricProblemsofAntiquity.html
https://terrytao.wordpress.com/2011/08/10/a-geometric-proof-of-the-impossibility-of-angle-trisection-by-straightedge-and-compass/
https://www.amazon.com/dp/B000FCKGVQ/



	Preliminaries
	Introduction
	Extended Example: A faster way to multiply
	Beyond Karatsuba’s algorithm

	Algorithms beyond arithmetic
	On the importance of negative results.
	Roadmap to the rest of this course
	Dependencies between chapters

	Exercises
	Bibliographical notes
	Further explorations



